Impacts of farming activities on the environment and agricultural landscape - importance of organic farming

assoc. prof. Ing. Jan Moudrý, Ph.D.

University of South Bohemia
Faculty of Agriculture
Department of Agroecosystems
Agriculture and landscape

• Agriculture – sector with areal scope

• Most common anthropogenic activity

• Natural ecosystems are directly and indirectly changed by agriculture – need of sustainable agricultural systems

• Positive and negative externalities of agriculture
Agriculture and landscape

• Cultural landscape

 – Landscape formed by nature factors and by anthropogenic activities

 – Increasing intensity of usage of natural resources affects the entire land area

 – Increasing share of cultural landscape
Agriculture and landscape

• Factors contributing to changes in landscape
 • Agriculture – one of oldest and most important anthropogenic activities
 • Forestry and wood industry
 • Fishery (ponds)
 • Food production
 • Industry
 • Energetics
 • Transport
 • Mining and quarrying
Agriculture and landscape

• The most significant anthropogenic changes in the landscape:
 • Vegetation character
 • Structure, layout and architectural features of rural settlements and homesteads
 • Specific buildings
 • Formation of infrastructure
 • Land parceling
 • Changes in water regime
 • Changes in soil quality
 • Micro and mezoclimatic changes
Agriculture and landscape

• Landscape is changed in each historical period
 – Creation of specific landscape matrix
• Landscape matrix - specific arrangement of land use (fields, vineyards, orchards, forests, ponds, lakes, settlements...)
• In time the arrangement of land use is changed
 – Changes in landscape look
 – Specific landscape elements can be preserved (mapping of landscape history)
Evaluation of landscape

- Landscape evaluation summarizes a wide scale of different professional views

- Subjective and objective components of evaluation
 - Objective components (share of grasslands, number of specific landscape elements) can be calculated and proven by statistical methods
 - Subjective components (harmony, landscape value) depend on evaluator

- Subjective and objective components of evaluation have identical value and importance
Perception of landscape

- Landscape is perceived by humans in last ca. 600 years only
- Middle ages – landscape is place, region (physical reality)
- 15. century – landscape is unimportant background
- 16. century – landscape is „picture“
- 17. century – landscape is complex unit (beginning of scientifical perception of landscape)
- 20. century – landscape is system
Perception of landscape

Cave paintings ca. 3000 b.c.

Mosaic floor in Rome 4. - 5. century

Evangeliar of Oto III of Reichenau ca.10. century
Perception of landscape

St. Jerome by Master Theodoric – ca. 1365

Leonardo da Vinci - Mona Lisa 1503-06
Perception of landscape

Rembrandt Van Rijn – Landscape with stone bridge ca. 1638

Claude Monet, wild poppies, 19-20. century

Karel Kupka – Landscape, presence
Perception of landscape

Annunciation
1308-1311 Duccio Di Buoninsegna

1350 – Anonym
Perception of landscape

1398 – Melichor Broederlam

1435 – Rogier Van Den Weyden
Perception of landscape

1472-1475 - Leonardo Da Vinci

1489-1490 – Sandro Botticelli

1520-1530 – Andrea Del Sarto
Perception of landscape

• Readability of landscape
 – Where I am?
 – When I am here?
 – How long we are here?

• Readability on different level – different indicators (from biodiversity species – to land use)

• The more information you can read from the landscape, the better quality landscape have
Doplnit pár fotek k "Čitelnosti"
Changes in landscape and historical development
Agriculture and landscape

• One of the oldest anthropogenic activities

• In Europe landscape is changed by agricultural activities almost 8000 years

• Strong impact on landscape character and functions

• With growing population and increasing demands on production, impact of agriculture is increasing
Changes in agricultural landscape

• In last 50 years the changes are faster and more intensive than in any previous historical period

• Between years 1945 – 2010 higher share of natural landscape was transformed into agricultural landscape, than in 18th and 19th century together.

• Impact of agriculture on environment is increasing
Changes in agricultural landscape

• Agroecosystems are currently the largest kind of terrestrial biom

• Ca. 35% of continents is covered by agricultural activities
 – 11% - Agricultural land
 – 24% - Areas used for grazing
Changes in agricultural landscape
Changes in agricultural landscape

• Largest agricultural bioms:
 – South-east and south Asia
 – South America
 – Eurasia and North America
 – Surroundings of large lakes in Africa
Changes in agricultural landscape in Europe

• The first significant turning point in the Middle Ages (13th-14th centuries)

 – Formation of new settlements
 – Deforestation of landscape
 – Formation of new fields and pastures
 – Secondarily non-forested landscape gains the higher share than the forested landscape
Changes in agricultural landscape in Europe

• Changes in agricultural systems
 – Intensification of agriculture in surroundings of cities and settlements
 – Increasing share of pastures
 – First „crop rotations“
 – Cattle and sheep breeding
Changes in agricultural landscape in Europe

• 15th – 17th century – peak of deforestation
 – Changes in biodiversity – expansion of species connected on deforested mosaic landscape

• 19th century – progress and changes in most of anthropogenic activities – impact on biodiversity and agrobiodiversity:
 – Industrial revolution
 – Changes in production technologies
 – Growing of new crops (potatoes, sugar beet, clover)
Changes in agricultural landscape in Europe

• 19th century – changes in population density in landscape
• Beggining of migration from agricultural landscape into towns
 – Disappearance of network of small fields and pastures
 – Decreasing of biodiversity (species connected on agricultural mosaic)
 – Biggest impact on invertebrates
Changes in agricultural landscape in middle Europe

• Major changes in the mid-twentieth century (after WWII)
 – Agricultural landscape is influenced by new geopolitical arrangement
 – Strongest impact on post-communist eastern bloc countries
Agriculture and landscape in Czech Republic

• Agriculture before 1948
 – Standart smaller private farms similar like farms in Austria, Germany, Poland, etc.
 – „Connection“ of farmers on their own land
 – Relative good condition of landscape
 – Tradition of family farms
 – Local agriculture production for local customers
Agriculture and landscape in Czech Republic

• Agriculture in years 1948-1989

 – Nationalization of farms

 – End of tradition of local farmers families

 – Breaking of the linking between peoples and agricultural landscape
Agriculture and landscape in Czech Republic

• Agriculture in years 1948-1989
 – Birth of large cooperative farms

 – Changes in production
 • Centralization of production (AP/PP)
 • Application of identical crop rotations for almost whole country
 • Only small differences in structure of production between places with very different conditions
Agriculture and landscape in Czech Republic

• Agriculture in years 1948-1989

• Activities of large cooperative farms
 – Consolidation of fields (demonstration of end of private owners)
 – Plough away of the balks
 – Removing of windbreaks (alleys, small forests, etc.)
 – Building of stables and agricultural buildings with very large capacities
Agriculture and landscape in Czech Republic

• Problems of large cooperative farms
 – Decreasing of biodiversity of field ecosystems
 – Erosion (water, wind...)
 – Pests (missing natural predators)
 – Plant diseases (easy expansion in big fields)
Agriculture and landscape in Czech Republic

• Problems of large cooperative farms
 – Lower yields (problems with pests and diseases)
 – Higher costs for fertilization and pesticides (compensation of lower yields)
 – Degradation of soil and water (use of abnormal amounts of pesticides and fertilizers)
 – Socio-economical problems (motivation of workers, lost connection with agriculture land)
• Problems of large cooperative farms
 – Centralization of loading by livestock units
 – Diseases of animals
 – Higher costs for animal health
Agriculture and landscape in Czech Republic

• Agriculture after 1989
 – Restitution of farms to original owners
 • Agriculture land
 • Animals
 • Buildings
 • Mechanozation
 • Monetary compensations
 – Some farms and parts of agriculture land stays in cooperative farms
• Agriculture after 1989

 – Change of legal nature of farms

 – Decentralization of farming

 – Renovation of traditional family farms (newly created connection on land)
Agriculture and landscape in Czech Republic
Agriculture and landscape in Czech Republic
Agriculture and landscape in Czech Republic
Agricultural landscape – environmental aspects
Agriculture – environmental aspects

• Landscape – comprise of different areas of environment:

 • Biodiversity
 • Soil
 • Water
 • Air
• Biodiversity
 – The diversity of species communities of living organisms

• Agrobiodiversity
 – The diversity of species communities of living organisms in agricultural ecosystems
 – The diversity of species communities of living organisms straight connected on agricultural ecosystems
Diversity and problems of agricultural landscape

• Expansion of agricultural land and intensification of agriculture have strong impact on natural and semi-natural habitats (e.g. Wetlands, natural meadows, forests...):

 – Direct change of natural habitats to agricultural habitats

 – Intensification of inputs in agroecosystems
Diversity and problems of agricultural landscape

• Goals of current industrial agriculture:
 – Maximal production on area unit
 – Standardisation of agricultural systems and methods of application of mineral fertilizers and pesticides

• Similar goals have seed producers and agrochemical companies
Diversity and problems of agricultural landscape

• Strong intensification of world agricultural productivity and production in last ca. 50 years
• Expansion of agricultural land
• Intensification of soil cultivation
• Implementation of large scale monocultures

• = negative impact on diversity
Diversity and problems of agricultural landscape

• Conversion of natural ecosystems into agricultural land still continues and will continue with growing world population

• In last 100 years 850 000 000 ha of natural ecosystems was changed into agricultural (deforestation, drainage of wetlands...)

• Strong negative impact on environment – losses of animal and plant species
Diversity and problems of agricultural landscape

• Losses of semi-natural areas and elements in agricultural landscape
 – In Czech Republic between 1948 – 1990 decrease of scattered natural vegetation in agricultural landscape from 2-3% to 0,5-0,7%
 – In GB loss of 95% of richly diverse meadows, 192 000 km of Hedges

• Loses of natural habitats and whole ecosystems
 – Rain forests in Amazonia
 – Deforestation in south-east Asia
Dát fotky z Bornea
Diversity and problems of agricultural landscape

• Problems of intensive agricultural systems

 – Strong dependence on external inputs
 – Increasing of inputs = higher consumption of energies and materials
 – Consumption of not renewable resources
 – Decreasing of genetic diversity of cultural crops
 – Negative influence on small-scale farming
Diversity and problems of agricultural landscape

- Decrease of number of agricultural farms due to intensification
 - Food production is strongly influenced by demand of world market, which is controlled by few companies (groups)
 - Lower competitiveness of smaller (family) farms
 - Increasing incomes for distributors, salers, decreasing of incomes for farmers = dependence of farmers
 - Import and export from and into third world countries
 - Deformation of local agricultural systems and structure of agriculture by globalisation of agricultural market
Diversity and problems of agricultural landscape

• Intensification have negative impact also inside of agricultural system

 – Genetic variability of crops
 – Decreasing number of traditional crop species
 – Genetic variability of livestock
 – Reduction of numbers of traditional local breeds
Diversity and problems of agricultural landscape

• Intensive crop varieties are growed on significant share of agricultural land
 – Positive impact:
 • Increase of production
 • Decreasing of pressure on natural habitats

 – Negative impacts:
 • Decrease of biodiversity and agrobiodiversity
 • Reduction of ecosystem services provided by biodiversity
Diversity and problems of agricultural landscape

• World genetic diversity in plant production
 – Only 150 crop species from huge total amount of usable crops is important from economical point of view
 – Only 103 crop species consists 90% of world food production
 – Only 4 crops (rice, wheat, maize and soybeans) provides ca. 70% of caloric consumption of world population
Diversity and problems of agricultural landscape

• Genetic uniformity in crop production increased during 20th century
 – 56 % of acreage of soyabean, 71 % of acreage of maise, 41
 % of acreage of wheat is covered by 6 varieties/hybrids
 – Losses in diversity of varieties reach up to 90% during last
 150 years
 • E.g. USA – decrease of varieties diversity of apples by 86 % (from
 original more than 7 000 varieties) and pears by 88 % (from
 original 2683 varieties)
Diversity and problems of agricultural landscape

• Problems of homogeneous varietes:

 – Higher risk of pest infestations
 – Increase of need of intensive chemical protection
 • negative impact on biodiversity and organisms with positive influence on soil quality, fertility, crop yields, etc.
 • Increasing of costs
 • Decreasing of productivity and efectivity of whole system
Diversity and problems of agricultural landscape

• Reduction of field „accompanying“ flora
• 100 spieces of non-curtual plant species in agroecosystems = space for up to 1200 species of fauna representants
• Liquidation of field „accompanying“ flora (typical for intensive farming systems) leads to strong decrease of biodiversity
• Intensive usage of insectids against pests have negative impact also on other species
Diversity and problems of agricultural landscape

• Alternatives for intensive agriculture

 – Systems protecting landscape, biodiversity and agrobiodiversity, with smaller demands on external inputs

 – Sustainable farming systems

 – Organic farming
Protection of landscape and environment in agriculture

- Organic farmers are usually active in environment and landscape protection
- Protection of environment is one of main goals of organic farming
- Balance between farming and protection of environment
 - Coexistence of ecosystems and agroecosystems
- Usage of preventive methods in production, support of biodiversity
Positive impacts of biodiversity on farming systems

• Plant protection

• Preventive and cheap tool for protection against weeds

• Semi-natural elements in agricultural landscape helps with reduction of pests
Positive impacts of biodiversity on farming systems

Parasitation of *Pieris napi* by *Cotesia rubecula*

<table>
<thead>
<tr>
<th>Distance</th>
<th>Parasitization Rate (parazitace na m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Přímo přiléhající</td>
<td>65</td>
</tr>
<tr>
<td>Vzdálené 10 m</td>
<td>57</td>
</tr>
<tr>
<td>Žádný pestrý úhor v okolí</td>
<td>5</td>
</tr>
</tbody>
</table>
Soil
Agriculture and soil

• Intensive farming is unsustainable
• Strong intensification leads to degradation of soils
 – 38% of agricultural soils was damaged by agricultural activities between 1945 – 1990 and this trend continues
 – Main damages of soils are caused by erosion
 – In Czech Republic ca. 40% of agricultural land is affected by erosion
 – In Europe ca. 33 000 000 ha is damaged by soil concretion
 – In Czech Republic ca. 45% of agricultural land is affected by concretion
Agriculture and soil

• Keeping erosion on acceptable level – goal of sustainable agriculture

• 1 t soil/ha is created per year

• Loss of 1-4 t of soil/ha – normative in Czech Republic

• Real loss in intensive agricultural systems up to 40 t of soil/ha
Agriculture and soil

Podmínky:
délka svahu 160 m, 8% sklon,
hnědozem,
odnos ornice (t/ha/rok)

Jetel červený
Obiloviny
Cukrovka
Silážní kukuřice
Agriculture and soil
Agriculture and soil
Positive changes within organic farming

• Soil protection in organic farming:
 – Diversification of crop rotations
 – Usage of cover crops and intercropping
 – Smaller land blocks
 – Creation of landscape elements
 • Influence against water and wind erosion
 • Effect against wind erosion 17x the height of landscape element
 • Other positive aspects (biodiversity, landscape quality...)
Positive changes within organic farming

• Soil organic matter (up to 30% higher organic carbon content)
• Increased soil biological activity (by 30-100 %), biomass decomposition indicator
• Higher total edaphon biomass (by 50-80 %)
• Higher saprophytic fungi abundance, higher root colonization by mycorrhiza
• More efficient use of acceptable resources by soil microorganisms
• Improved physical and chemical soil properties, soil structure
• Improved hydroscopicity and erosion threat reduction
Water
Agriculture and water

• Influence of agriculture on water regime is enormous

• In many countries the water is used in agriculture faster, than it can be restored from natural sources

• Ca. 66 % of water used by people is used in agriculture

• Intensive farming causes water pollution mainly by usage of pesticides and mineral fertilizers
Positive changes within organic farming

• Respecting of local condition affects the crop selection and decrease the need of irrigation

• Organic farmers fertilize the soil in such way so not to pollute groundwater (usage of manure and liquid manure)

• Green manure also used and legumes are properly incorporated into the crop rotation – reduction of the leaching of nitrogen into groundwater

• Due to wider crop rotations the soil structure in organic farming provide better infiltration.
Positive changes within organic farming

• In 40 scientific publication comparing nitrate leaching or a leaching potential analysed by [Haas, Berg, Köpke, 2002]
 – twenty eight stated lower values within the organic farming system
 – nine issued comparable data
 – only in three cases, the nitrate leaching respectively its potential were higher within organic farming than in conventional one
Air quality
Agriculture and air quality

• Due to its large area impact, agriculture belongs to the largest producers of greenhouse gases emissions after industry, mining and transport

• Organic farming produce less greenhouse gas emissions as compared to conventional intensive farming systems
Main anthropogenic emissions – EU
(Svendsen 2011)

Hlavní zdroje emisí v EU

Podíl na celkových emisích [%]

- Energetika: 27,8%
Main anthropogenic emissions – EU
(Svendsen 2011)

Hlavní zdroje emisí v EU

Podíl na celkových emisiích [%]

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energetika</td>
<td>27.8%</td>
</tr>
<tr>
<td>Transport</td>
<td>19.5%</td>
</tr>
<tr>
<td>Průmysl</td>
<td></td>
</tr>
<tr>
<td>Zemědělství</td>
<td></td>
</tr>
</tbody>
</table>

(Svendsen 2011)
Hlavní zdroje emisí v EU

- **Energetika**: 27,8%
- **Transport**: 19,5%
- **Průmysl**: 12,7%
- **Zemědělství**: 0,0%
Main anthropogenic emissions – EU
(Svendsen 2011)

Hlavní zdroje emisí v EU

Podíl na celkových emisích [%]

- Energetika: 27,8%
- Transport: 19,5%
- Průmysl: 12,7%
- Zemědělství: 9,2%
Anthropogenic emissions in Czech Republic – energetics, industry, agriculture

Emissions from agriculture 6,4 % (Miňovský et al., 2013)

Main emissions from animal production (cattle)

Emissions from plant production are important due to high area impact
Greenhouse gases emissions from agriculture – evaluation methods

• Methods:
 – LCA (Life Cycle Assessment)
 – EF (Ecological Footprint)
 – EA (Emergy Analysis)

• All methods useful for agriculture

• LCA – Life cycle assessment – collection and evaluation of inputs, outputs and possible impacts of production system on environment during life cycle of product
Life cycle assessment (LCA)

• Setting of frame of analysis
 – Important moment of LCA – influence on outputs
 – Pre-farm, farm, post-farm phase

• Functional unit
 – Simply measurable and expressibel
 – Production unit
 – Area unit

• Alocation – Distribution of environmental impacts of one process among the process outputs (products)
LCA – setting of frame
Emissions from plant production in Czech Republic

- Local data from farmers

- Software SIMA PRO

- Setting of production methods and chains
 - Specification of usual methods in organic and conventional farming in Czech Republic

- Modification in ECOINVENT database
 - Modification of partial inputs according to practice in Czech Republic
Emissions from plant production in Czech Republic

• Selected groups of crops
• Emissions from farm phase
• Sub-groups
 – Agrotechnics
 – Fertilizers
 – Pesticides
 – Seeds
 – Field emissions

• \((\text{CO}_2\text{e} = 1x \text{CO}_2 + 23x \text{CH}_4 + 298x \text{N}_2\text{O})\)
CO₂e emissions from farm phase

CO₂e - emissions from agriculture - potatoes CZ

- seedling
- agrotechnical operation
- pesticides
- fertilizers
- field emissions

Conventionally vs. organically grown potatoes in CZ.
CO$_2$e emissions from farm phase
CO$_2$e emissions from farm and post-farm phase

CO$_2$e - emissions from potatoes products - CZ
CO$_{2e}$ emissions from farm and post-farm phase

Regionality and CO$_{2e}$ emissions
Emissions from transport

kg CO₂e/kg

česká italská novozélandská

JABLKA
Impacts of organic production

- Organic products are usually more expensive than conventional.

- Product price – main selection criterion for most of the consumers.

- Selling price vs. Real value of products.
Impacts of organic production

- Real price of products

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>Socio-economical costs</th>
<th>Health costs</th>
<th>Environmental costs</th>
<th>Selling price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank you for attention